Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(7)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37510217

RESUMEN

MicroRNAs are tissue-specific expressed short RNAs that serve post-transcriptional gene regulation. A specific microRNA can bind to mRNAs of different genes and thereby suppress their protein production. In the context of the complex phenotype of fibromyalgia, we used the Axiom miRNA Target Site Genotyping Array to search genome-wide for DNA variations in microRNA genes, their regulatory regions, and in the 3'UTR of protein-coding genes. To identify disease-relevant DNA polymorphisms, a cohort of 176 female fibromyalgia patients was studied in comparison to a cohort of 162 healthy women. The association between 48,329 markers and fibromyalgia was investigated using logistic regression adjusted for population stratification. Results show that 29 markers had p-values < 1 × 10-3, and the strongest association was observed for rs758459 (p-value of 0.0001), located in the Neurogenin 1 gene which is targeted by hsa-miR-130a-3p. Furthermore, variant rs2295963 is predicted to affect binding of hsa-miR-1-3p. Both microRNAs were previously reported to be differentially expressed in fibromyalgia patients. Despite its limited statistical power, this study reports two microRNA-related polymorphisms which may play a functional role in the pathogenesis of fibromyalgia. For a better understanding of the disease pattern, further functional analyses on the biological significance of microRNAs and microRNA-related polymorphisms are required.


Asunto(s)
Fibromialgia , MicroARNs , Femenino , Humanos , Fibromialgia/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Polimorfismo Genético , Fenotipo
2.
Sci Rep ; 11(1): 11776, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083708

RESUMEN

Fingers facilitate number learning and arithmetic processing in early childhood. The current study investigated whether images of early-learned, culturally-typical (canonical), finger montring patterns presenting smaller (2,3,4) or larger (7,8,9) quantities still facilitate adults' performance and neural processing in a math verification task. Twenty-eight adults verified solutions to simple addition problems that were shown in the form of canonical or non-canonical finger-number montring patterns while measuring Event Related Potentials (ERPs). Results showed more accurate and faster sum verification when sum solutions were shown by canonical (versus non-canonical) finger patterns. Canonical finger montring patterns 2-4 led to faster responses independent of whether they presented correct or incorrect sum solutions and elicited an enhanced early right-parietal P2p response, whereas canonical configurations 7-9 only facilitated performance in correct sum solution trials without evoking P2p effects. The later central-parietal P3 was enhanced to all canonical finger patterns irrespective of numerical range. These combined results provide behavioral and brain evidence for canonical cardinal finger patterns still having facilitating effects on adults' number processing. They further suggest that finger montring configurations of numbers 2-4 have stronger internalized associations with other magnitude representations, possibly established through their mediating role in the developmental phase in which children acquire the numerical meaning of the first four number symbols.


Asunto(s)
Encéfalo/fisiología , Fenómenos Electrofisiológicos , Dedos , Desempeño Psicomotor , Adulto , Cognición , Electroencefalografía , Potenciales Evocados , Humanos , Aprendizaje , Masculino , Memoria , Tiempo de Reacción
3.
J Cogn Neurosci ; 32(7): 1263-1275, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32073349

RESUMEN

The nature of the mapping process that imbues number symbols with their numerical meaning-known as the "symbol-grounding process"-remains poorly understood and the topic of much debate. The aim of this study was to enhance insight into how the nonsymbolic-symbolic number mapping process and its neurocognitive correlates might differ between small (1-4; subitizing range) and larger (6-9) numerical ranges. Hereto, 22 young adults performed a learning task in which novel symbols acquired numerical meaning by mapping them onto nonsymbolic magnitudes presented as dot arrays (range 1-9). Learning-dependent changes in accuracy and RT provided evidence for successful novel symbol quantity mapping in the subitizing (1-4) range only. Corroborating these behavioral results, the number processing related P2p component was only modulated by the learning/mapping of symbols representing small numbers 1-4. The symbolic N1 amplitude increased with learning independent of symbolic numerical range but dependent on the set size of the preceding dot array; it only occurred when mapping on one to four item dot arrays that allow for quick retrieval of a numeric value, on the basis of which, with learning, one could predict the upcoming symbol causing perceptual expectancy violation when observing a different symbol. These combined results suggest that exact nonsymbolic-symbolic mapping is only successful for small quantities 1-4 from which one can readily extract cardinality. Furthermore, we suggest that the P2p reflects the processing stage of first access to or retrieval of numeric codes and might in future studies be used as a neural correlate of nonsymbolic-symbolic mapping/symbol learning.


Asunto(s)
Encéfalo , Aprendizaje , Mapeo Encefálico , Lenguaje
4.
Front Psychol ; 9: 2690, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713516

RESUMEN

The development of math skills is crucial for adequate functioning in academic and professional settings as well as in daily life. A factor that has been shown to negatively influence performance and acquisition of math skills is math anxiety. With the high prevalence of math anxiety in society and the long lasting effects on math performance, it is important to study the relation between math anxiety and math performance in young children. Since math anxiety is often more pronounced in women than in men, it is essential to take the effect of gender into account. While the effect of gender on the relation between math anxiety and math performance has been studied in adults and adolescents, less research has focused on children, especially children at young ages. To fill this gap, the current study examined how the relation between math anxiety and math performance differed between boys and girls in early elementary school years. Math anxiety and math performance was assessed in 124 second- and fourth-grade children (67 girls and 57 boys). Although boys and girls showed more or less equal levels of math anxiety and performed similarly at the arithmetic task, correlation analyses showed that only in girls, math anxiety significantly correlated with math performance. Analyses investigating if math anxiety moderated the effect of gender and grade on math performance revealed significant differences between boys and girls. Higher levels of math anxiety only significantly and negatively moderated math performance in girls, with the greatest effect observed in 2nd grade girls. These findings highlight the importance of taking gender differences into account when studying the effect of math anxiety. The results showed that math anxiety is already negatively linked to math performance in girls as early as second grade. The present findings emphasize the importance of the early identification and remediation of math anxiety in girls to prevent long lasting effects. Possible causes for the gender related differences will be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...